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ABSTRACT

The mode—matching technique is employed for computing the propagation

constants and field distributions of an inverted strip dielectric waveguide.

The results derived in this manner are further improved by using variational

formulas expressly designed for open dielectric waveguides. Illustrative

numerical results are presented and compared with experimental measurements

as well as those based on approximate methods found in the literature.
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1. INTRODUCTION

Recent interest in the 30—300 GHz range, which has remained relatively

unexplored hitherto, has led to the investigation of low—loss, low—cost di-

electric waveguide designs ([1)— [4]) suitable for integrated circuit applications

in this freq uency range.

In order to develop reliable designs for uniform dielectric guides ,

as well as for active and passive components constructed from these waveguides,

it is extremely important to have the capability of theoretically predicting

the performance of these circuit elements and transmission media.

A search through the literature on optical and quasi—optical dielectric

waveguides reveals, however, that the progress in this direction has been

rather limited and the most commonly employed approach appears to be based

on what is called the “effective dielectric constant” method ([l]—[4]). An

alternate approach, called the “effective permeability” method,has also been

developed 151; however, both of these techniques are based on certain approxima-

tions that are neither easily justified r~ralways satisfied. Furthermore, they

do not provide information on complete field distributions. Recently, an exact

formulation of the problem for dielectric image guides has been developed which is

based on the expansion of the field in each subregion of the guide cross—section

into a complete set of functions, and the consequent matching at the boundaries

[6]. The numerical results obtained from this method seem to be in good

agreement with the experimental results.

In this paper, a rather similar approach based on the mode—matching

technique [7] is used for a more complete analysis of the open, planar,

dielectric waveguide problem, specifically,an homogeneous inverted strip

guide (HIS). The method is quite general, and is useful even at optical

frequencies. In addition, a single—mode approximation of the full—wave method

presented here is found to be equivalent to employing the “effective dielectric

constant” approach.
1
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The propagation constant obtained from the mode—matching technique

is further improved , by employing variational expressions which are modified

for the present analysis.

2. MODE MATCHING

We consider the waveguide geometry in Fig. l,which shows the cross—

section of the homogeneous inverted strip guide (HIS). For simplicity of

analysis, and in ordr~r to define a proper eigenvalue problem, a perfect

electric conductor is placed parallel to, and at a large distance from the

ground plane. The distance b is chosen large enough to make the influence

of the conducting plane on the guide properties negligible. The guided modes

in this structure will generally have all the components of E and H fields.

Because of the symmetry of the structure with respect to the x — 0 plane

(Fig. 1), symmetric (even) and antisymmetric (odd) modes can propagate in

the guide. If E
y 

is even (or H is odd), we can insert a magnetic wall at the

x — 0 plane, without affecting the field distrihution. Similarly , if E is

odd (or H is even), we can introduce an electric wall at the x o plane.

In either case, we need to consider only half of the guide cross—section . Here,

we consider only the ~~_sYt~mtetric case (ll’agneti~ wall at x — 0) and the rig!~.

half of the guide cross—section. The antisynmietric case can be similarly

studied.

As shown in Fig. 1, we divide the region under consideration (right half

of the cross—section) into two subregions . The field in each region can be

expanded in terms of its eigenfunctions. Next, we match the fields at the

interface x — w and solve for the prapagation constant, as well as the field

distribution.
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Figure 1. Cross—section of homogeneous inverted strip guide.
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2.1. Modes in Regions l and II

The modes can be classified as TM or TE with respect to the y—direction

• [8]. The fields can be expressed in terms of the scalar potential functions
e hf (x ,y) and f (x,y) as follows.

TM Modes:

~ 2 f e (x ,y)
E -

mm c(y) 3x ay

E = (k~ — ~) f e (x y)

—jk 3f e (x ,y)
E Z m

zm E(y)

(1)

eH —wk t f (x ,y)
mm z 0 m

H = 0

~ f (x,y)
H = j w czm 0 ~x

The potential function of the m— th TM mode is separable and can be

written as:

4
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f
e (x ,y) 

~~ 
(y) cos(k x) (2)

and

COS 
~ ylm ~ 

for 0 < < h

— cos [k
y2m 

(y—h)] + 
~~ 

sin[k
y2m 
(y—h)] (3)

for h~~y~~ (h+d )

cos [k
y~~ 

(h+b-4-d—y)]

for (h+d) < y < (h+d+b)

in which

e
a = cos (k h)
m ylm

E k
~~~~~~~~~ —~-~~~sin(k h)

m ~ k ylm1 y2m

c k
= [cos (k h) cos (k d) — —~~~ ~~~~ sin (k h)

ni ylm y2m c k vlsi
1 y2m

sin (k
y2m 

d)] / cos (ky3m 
b)

k (t k
2 

— k2 
— k2 ) 1/2

ylm 1 0 mm z

k (c k2 
- k2 

- k2 ) 1/2
y 2m 2 0  mm z

k - (
~ k2 

- k2 
- k2 ) 1/2

y3m 3 0 mm z

2 2k0 ~ 5



In Region I, C~~, £2, 
and €

3 
are relative dielectric constants of the

dielectric strip, guiding layer, and air, respectively.

2 2
The eigenvalue equation for k + k is

x 2

(k 1/€ 1
) tan (k 1 h) + (k 2/€ 2) tan (k 2d) + (k 3/c 3) tan (k 3b)  —

(4)

[(k y1/C 1) (k~3/€ 3
) / (k~2/e 2)] tan (k~1 h) tan (ky 2 d) tan (k~3b)

TE Modes:

h
E wu k f (x,y)

mm 0 z in

E = 0
yin

ha 
~ni 

(x, y)
E = — jwuzm 0 ax

2 h3 f (x ,y)
H =

mm 3y 3x

H = (k
2 

- --~~~~~ f
h(x y)

ym z m

h3f (x,y)
H =-j k Ifl

Ztfl 2 oy

The potential function of the m—th TE mode, f
h(x ,y) , is also separable and

can be written as:

f
h (x ,y) — 

~~~
y) sin (k’ x) (6)

6
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and

Sin(k’j.m Y) for O < y < h

q~~(y) — cxh con (k’~~ (y—h) ] + &~ sin[k 2m (y_h) J (7)

for h < y < h + d

aIt sin[k’ (h+d+b—y)J for (h+d) < y < (h+d+b )
in y 3m

in which

= sin(k’ h)
in y lm

y].ni cos(k’ h)
in k ylmy2m

[sin(k’
1
h) cos(k’~~d) + ~~~~~~~ 

cos (k ’~~ h)

sin(k’
2
d) ]/sin(k’

3
b)

1/2
— (€ k2 

— k’ 2 
— k2)

ylm 1 mm z

1/2
— (c k2 

— k’ 2 
— k2 )

y2m 2 mm z

— (c k2 
— k 2 

— k2 ) 1/2
y3m 3 mm z

The eigenvalue equation for k’2 + k2 
is

7
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(1/k’1) tan(k’1h) + (1/k’2) tan(k’2
d) + (1/k’ 3

) tan(k’ 3b) —

(k’ 2 / ( k’1 k’ 3) ]  tan(k ’1h) tan(k’ 2d) tan(k’ 3b)

This completes the discussion of the modes in Region I. The modes in

Region II can be ob tained from those in Region I by simply setting €
~ 

— 1, and

assuming an exponentially decaying wave in the x—direction.

2.2. Fields Expansion and Matching

The fields in each of the two Regions I and II are first expanded in

terms of the TE and TM mode functions. The expansion coefficients and the

propagation constant (k
2
) are then obtained by matching the tangential components

of the fields at the interface plane x — w.

Fields Expansion in Region I

eM 2 2 cos(k x) ~ (y)
E “~~~~~ 

(k + k )  mm A
‘ in—i mm z cos(k w) c(y) in

M’ sin(k’ x)
— ~ (k~~ + k~ ) sin(k ’ w) ~~(y) Bmin’ i mm

eM cos (k x) 3~ (y)
E2 ii—l 

(—j k )  cos(k,~~w) ~~Y 3y

cos( k’ x)
+ 

~ 
(-j wu 0

k~~) sin(k~
°11

w) 4Irn~~~m—l mm

M gjn (k x)
— ~ (-jwc0 

k )  Cos(k W) ~~ (y) A
rn—I mm

8 
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M ’ sin(k’ x) 3f h ( )
+ ~ (.j~~) (k ’ )  

—
~~~

—— B
m l

eM sin(k x) ~~ (y)
E =~~~ ( k  ) mm ___ _ _ _ _  Ax m~l 

mm cos(k w) c(y ) 3y rn

sin(k’ x)
+ ~ (w~~~k )  sin(k ’ w) q~~(y ) B
in—i mm

M cos (k x)
H = ~ (—wc ~ k ) mm ~e(y) A
x U z cos(k w) in inni—i mm

hH cos (k x) 3~ (y)
+ ~ (k ’ )  sin(k ’ w) B

in-i mm

A ‘s, B ‘ s and k in Eqs . (9) are constants to be determined.
in in z

Fields Expansion in Region II

— —eN —2 2 —j k (x—w)
E —

~~~ (k + k ) e  mm 
— 

C
~ in—i mm z c( y) ~

N’ -j
~
’ (x-w)

H =

~~~ 

+ k~ ) e mm 
~~(y) D

~

9

I
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N —j~~ ( x—w ) 
~ ______E ..

~~~ (— jk) e — Cz ~ (y) 3y in

N ’ —j k’ (x-w )

m l  
(—w

0~~~
) e ~~L (y) D

N —j ~ ( x—w)
H -

~~~ 

(wc
0 ~~~) e 

mm 

~~ 
c
~

N’ —j ~~’ ( x—w ) 3,
h (y)

+~~ (—j k ) e IS D
in-i 

y in

- 

N 
- 

_j
~~~~~

(x_w) 
i. 

______

~ (—j k ) e ~~~
— Cx in—i xis c(y)  3)? rn

N’ —j~ ’ (x—w)
+~~~ (w~i k )  e mm ~h (y) D

rn—i 0 z  in in

N -j k (x-w)
H = 

~ (—wc (~ k) e mm 
~~~y) C

in-i in

N’ 
— 

-j
~
’ (x—w)

m—l 
(—j k ’ )  e mm 

_______ D (10)

In Eqs. (10) the barred characters are used to distinguish the values in

Region II from those in Region I , and Cs’s and D
~

’s are constants to be

determined.

10
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Matching of Tangential Field Components at x — w

Required continuity of the field components E , H , E , and H , asy y z

given in Eqs. (9) and (10) , across the plane x — w, ieads to the following

equations :

CM 2 c~~(y ) N
k )  A - ~ (~ 2 

+ k2 ) C - 0 (ii)~ (k 2 
+ y) in mm z ~ (y) ini n l  m l

N’
~ (k’~ + k2 ) 4~~(y) B — ~ (~~

2 
+ k2 ) ~h (~ ) D — 0 (12)

IS inmm 2 in xism1.

M i 3~ e ( )  M’ ~~i mmA + ~ —p cot (k’ w) ~h (y) B
in mm in inm—l “ rn—i 2

N 3~ C (y) N’ —j ~*.i k ’1 in _ _ _ _

~~~ 3y C — ~~ (y ) D — 0 (13)in k in in
rn—i m—l z

M 
~~~ 

k.~~ H’ 3f h ( )
tan (k w) ~e ( )  A + ~ B

xis in in 3y in
in—i z m i

N j~ e k N’
r o mm —e 

______1 k ~~~~~~~~~~~ 

cin — D — 0 (14)y inrn—i z rn—l

Equations (11) - (14) yield an exact solution for the fields and propaga-

tion constants if M, N, M’ and N are infinite. However, in practice,

one must limit these to finite numbers. As a consequence of this approximation,

ii
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the field matching at the interface is not perfect and there is a residual

discontinuity of the tangential fields as one traverses the interface. We

will address this problem a little later when we derive the variational

expressions for the propagation constants.

The following orthogonality relations can be shown to hold and are

utilized in solving Equations (ii) — (14).

h+d+b
1 e e

~~~~~ ~~~~ dy — 0
0

h+d+b
r h h
j ~~ (y) ~~ (y) dy — 0

f o rm # n  (15)

h+d+b

(:1
’ ~ (y) ~~~~~ (y) dy — 0

h+d+b
p -h —h
~ ~~~~~ ~ (y ) d y — O
0

Notice that no cross—orthogonality relations exist between the different

potential functions. Any two or all four of the relations in (15) can be

used in setting up a system of linear homogeneous equations. Next, we assume

an equal number of TM modes in the two Regions I and II (i.e. M — N) , and

also an equal number of TB modes (i.e. M’—N’). We then multiply Equation

(11) by ~e(y ) ,  Equation (14) by ~~(y)/€ (y), for n i, ..., M, and Equations

(12) and (13) by 1~~
(y) , for n—i, ..., H’ . Finally , we integrate the products

over the interval 0 < y < (h+d+b). Using the first two orthogonality relations

in (i5), we obtain a system of 2(M+M’) linear homogeneous equations for the

unknowns A , C , for n—i, ..., H, and B , D , for n 1, ..., M’ . The nextn n n n
step is to solve for A ’s and B ’ s from the set of equations generated from

12
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(11) and (12) and then insert the results in the set of equations generated

from (13) and (14). This procedure yields a reduced system of (l*M’) homo-

geneous equations for the unknowns C , with n—i, . . .M, and the unknowns D , with

n 1 , ...M’. The zeros of the determinant of this system of equations are the

desired eigenvalues or the propagation constants k . Each k relates to a

particular guide mode for which C ‘s, D ‘s, A ‘s and B ‘s are found within
fl n n n

a constant multiplicative factor.

3. REDUCTION TO EFFECTIVE c CONCEPT

It can be shown that solutions based on “effective dielectric constant”

concepts ((3], [4]) are essentially one—term approximations of the present

analysis. This is illustrated by setting H—N—i and M”N’ O. Then following

the steps outlined in Section 2, the following eigenvalue equation for k is

obtained.

h+d+b
(k2

1
+k 2) f (4~~(y) ~1

(y)/€ (y)) dy
k 1 tan(k 1

w) - ~j j~ [ ~ 
h~~ib 

] (16)
(k
xi + k

2
) j (4~~(y) ~1

(y) /~ (y ) )  dy
0

The quantity in the square brackets in Equation (16) can be assumed to be

approximately one . Then a comparison of Equation (16) with the eigenvalue

obtained from the “effective perinittivity” approach (e.g., Equation (9) in

[4]) shows them to be identical.

Therefore, the method presented in the present work is a generaliza-

tion of the existing approaches that makes is possible to derive higher—order

approximations in a systematic manner.

13
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4. VARIATIONAL IMPROVE~1ENTS

The mode—matching results for the propagation constants can be further

imoroved via the use of the variational techniques. The field distribution is,

in general, discontinuous across the interface of the Regions I and II where

the matching takes place. This, as has already been mentioned in Section II,

is due to the approximation introduced by the use of a finite number of TM

and TB modes in the process of matching the field across the interface x — w.

The presence of such discontinuities requires that the conventional variational

formulas for obtaining the propagation constant from the approximate fields

distributions ([8], [9)) be suitably modified. Although three different

formulations (E—field , H—field, and mixed—field) of the variationaiprobiem are

possible, only the mixed—field formulation is considered here.

4.1.. Mixed—Field Formulation

Following Harrington’s formulation of the problem [8], we define the

waves traveling in the +z direction in the guide as:

—jk z - —jk z
-# •+ -.- I. z -

~ 2E — E (x ,y) e — (E
~ 
+ z E )

(17)

—j k z —j k  z
-4-4. -4+ z -

~ zH — H (x,y) e — + z H )

It can be shown that for any traveling wave solution in the +z direction ,

there exists a corresponding traveling wave solution in the —z direction

given by:

14 
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+jk z +jk z
— E (x ,y)  e Z 

— — z E )  e Z

(18)

+jk z . +jk z
— ir (x ,y) e Z a (—11 .~ + a H2

) e Z

Then, the mixed—field stationary formula for k2 is found to be (see Appendix I)

-
~- + -

~
- -

~- + * -4-

Ic — M + IT (
~~ E •E 

— wijH •H + jH •‘7 )( E + j E  ~ X 
~ 

) ds (19)
2 2 f f  E~~~

X H
~~

. z ds

in which

(20)
p in in pC

The double integrations in (19) are over the cross—sectional surface of the

guide and the line integration in (20) is performed along the interface where

the field is discontinuous. The subscripts “p” and “in” in (20) indicate

opposite sides of the discontinuity surface while n is the unit normal to

this surface directed from “m” to “p. ” The expression (19) is valid when

the trial fields satisfy the boundary condition on the walis of the guide,

although they may be discontinuous across some interface c in the cross—

section of the guide. If no such discontinuity exists, M~ as given in (20),
becomes zero and the variational formula (19) reduces to a simpler one given

in (8].

For the geometry in Figure 1, n — x and subscripts “p” and “ in” , indicate

the fields at x — w~ and x — w , respectively .

15
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5. ~WMERICAL RESULTS

5.1. Results of Mode—Matching Calculations

In this section, we present some representative results based on the

analytical procedures described in Section 2. All of the results pertain to

the homogeneous inverted strip guide of Figure 1, and are computed for 79.4

GHz to coincide with the experimental measurements.

Table I shows the convergence of the results for the propagation

constant with the increase in the number of TE~ and TM~
’ modes retained in

the mode—matching calculations. The results obtained from the “effective

dielectric constant” approach, which is equivalent to a single—mode approxi—

mation,and the measured values of Ic are also included in the table. It should
z

be pointed out that although the propagation constant for the dominant inode as

computed froin the “effective dielectric constant” method is quite accurate,

neither the results for the field distribution of this mode, nor the propaga-

tion constants of the higher—order modes are comparable in accuracy to those

derived from the mode—matching procedure.

Figures 2—5 compare the tangential field components of the E~1 guide

mode at x = w and x — w~. The H and H fields are extremely well—matchedy 2 -

when 7 TB and 7 TM modes are used for the field expansion in the two regions,

0 < x < w and a > w+. However, the E field match improves only slightly as

the number of modes used is increased. The matching of E is more difficult
y

since it is a continuous function of y at x — w and y — h, while a discontinuous

function of y at x — w
+ 

and y h. However, except for this difficulty at x —

the matching process for the E field converged rapidly at other values of x as is

evident froin Figures 6 and 7. Figure 6 shows the distribution of D
~ 

at the x — 0

16
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TABLE I.

PROPAGATION CONSTANTS OF THE GUIDED MODES IN HOMOGENEOUS INVERTED

- 
- STR IP GUIDE (SHOWN IN FIGURE1) AT FREQUENCY 79.4 GHz

A E~ii

1 TE 3 TE 5 TE 7 TE Effective Experinent
1 TM 3 TM 

- 

5 TM 1 ~ TM J  C

k 2.97181 ~2.98916 2.98721 2.98726 2.9906 3.0

(~~~1)~~~ 
_ _ _  _ _ _  _ _ _  _ _ _ _ _ _ _ _ _ _ _ _

B - 11

1 TE 3 TE j 5 TE 7 TE Effective
1 T H  3 T M  5T H  7 T H

k 2.73411 2.62101 2.72954 2.72033 2.75947

(mm ) j  
_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _

C ~~
‘

2l

1 TE 3 TE 5 TE 7 TE Effective
1 TM 3 TM 5 TM 7 fl-I

Ic 2 .36457 2 .387 13 2.39104 2.39080 2 .40701

(~~~~1)

17
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I I I
lHy~~. 7TE

7TM
o.oo~o - X W

X W ÷

0.0025 -

h + d b

0.0020 -

0.0015 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 y

mm
Figure 2. Plot of H I  field of the E~1 mode at the

interface for x = w and x = w+.

18



- - — — V-V .—— —~~~ 
. .. .. - , V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. - . .. -~~~

I I I I I
lHzI 7TE

7TM
0.030 - x =w-

x~~w+
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Figure 3. Plot of 1H2 1 field of the E~1 

mode at the

interface for x = w and x = w~.
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Figure 4. Plot of IE~l field of the E~1 
mode at the

interface for x — w and x =
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lEz i I I I I ‘7TE I I I

7TM
x = w—V 3.0 - -

X W+

2.5 -

/ \
/ \
I

2.0 - / -

I

o.%K5 ,’O I ~~~~O 2
’
5 3 O 3

’
5 4 O ~~~

Figure 5. Plot of 1E 2 1 field of the E~1 mode at the

interface x — w and x = w
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1 8 -
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14-

~~~
I0. h

+
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+

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 y

mm
Figure 6. Plot of IDy l field of the E~1 mode in the

vertical direction for x 0.0.
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Figure ‘

. Plot r E field of the E~1 
mode in the transverse

direction for v — h + d -‘ 0.
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plane. The field is seen to be extremely small at the top shield located at

y — h + d + b, with b = 2(d+h), thus justifying our original assumption that

- 

V
. 

the perturbation introduced by th~ perfect electric conductor placed at the

top of the guide is negligible. Figure 7 shows the distribution of E
~ 

at the

y = h + d + 0+ plane. It is evident from this diagram that most of the energy

carried by a guided wave is confined within the strip region.

5.2. Results of Variational Calculations

The field distributions calculated via the mode—matching mathod are

used in the modified variational formula for the propagation constant as

given by Equations (19) and (20) in Section 4. Some calculated values of

Ic , using this mixed—field formulation, are presented in Table II and are

compared with the results obtained directly from the solution of the eigen—

value problem in the mode—match ing technique .
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TABLE II.

PROPAGATION CONSTANTS CALCULATED VIA VARIATIONAL METHOD .
CO~~ARISON IS MADE WITH MODE—~IATCHING RESULTS GIVEN IN
TABLE I.

A.

1TE 3TE STE
11 ITh 3Th1 5TH

Mixed field
formula (vari.)* 2.98871 2.98588
Mode
Matching 2.97181 2.98916 2.987208

B.

1TE 3TE STE
ll 1.TM 3TM 5TM

Mixed field
fo~ nula (vari.)* 2.74028 2.61385
Mode
Vl a t c h i ng  2.73411 2.62101 2.72033

C.

E~ 
1TE 3TE 5TE

21__ 1TH 3TM 5T1
Mixed Field 

*
formula (van .) 2.39487 2.37895
Mode
Hatch ing 2.36437 2.38713 2.39104

*vari. stands for variational

25 
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APPENDIX I

In establishing the variational expression (19) in Section 4, we have

employed the reciprocity theorem as embodied in the reaction concept ([8],

[10]). The reaction between infinite traveling—wave line sources located in

the interior of a waveguide and the fields radiated by them can be defined

as follows (10]:

a f J  a~~’~~ 
a ~~(x ,y) + IZ (x,y) a i~~(x ,y)] dx dy (1—1)

1 0 0

in which a = 0 1 0

0 0 —l

-j k z
j J(x,y) e Z

—jk z
K = K ( x ,y)

-~ -jk z

~~~~ E ( x ,y) e Z

— jk z

H = H (x ,y)

The double integration in (I—i) is performed over the cross section of the

guide . In view of the definitions of +z and — z traveling waves (as given by

Harrington (8]) in Equations (17) and (18) and similar definitions for the

sources as given below
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I’ __ —jkz .
~ 

—jk~z- J (x ,y)  e — 
~~~ 

+ z J )  e

(1—2)

r — (x ,y) e

_
~~

C
~~ — (~ + I c )  e

_ik
z
Z

+jk z  ... +jk z
= ~~ (x , y)  e Z 

— — z J )  e 2

(1—3)

+jkz

L ~ 
= r (x ,y) e = (~~~ + z K )  e Z

Ramsey ’s reaction formula (I—i) for the uniform waveguides can be written

in the following equivalent forms:

<a,b> ff (~~~.~~~~— i ~~~.i ~~)dx dy

- I f  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(1—4)

-1+ -
~- -~- ~+‘i

_ f f  ( r . ç _ i ~
- . i ~~) d x dy .

It can be shown [8] that
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<a , a> — 0 (1—5)

is a stationary formula for a trial field “a” and the associated source . For

the waveguide problem , the stationary formula for the propagation constant

is found from ( 1—5) using the definition of the reaction as given in (I—i)

or any of the equivalent forms given in ( 1—4 ) .  For instance , Harrington [8] ,

in effect, uses the fourth expression for the reaction in (1—4) to obtain

the variational expression for the propagation constant.

In this paper, we use the same expression for the reaction (fourth in

(1—4)) in the formulation of the variational expression. Starting from

Maxwell’s equations, the electric and magnetic sources are found to be

- 7  ~~~ + ~~~ 
- j k z  x

(1—6)

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and

-K a V x E  + jwiili + jk

(‘—7)

These sources support the fields and can be used in (1—5). However , if the

fields are discontinuous along a certain interface “c” in the cross section

28
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of the guide, additional surface currents, as given below,are needed to support

the discontinuity .

-0+ -
~~ -0+ -0+

—K — n x (E — E )
s P m

(1—8)

-0-4- -.+ -‘-4-
J — ~ x (H — H )
s p m

-0— -4 0-
and —K = n X  (E — E )s p m

(‘—9)

in which subscripts “p” and “m” refer to the opposite sides of the surface

of discontinuity and ~i is a unit normal directed from “m” to “p.”

The variational formula (1—5) using the fourth expression of the

reaction in (1—4) is written as

-0+ -0+
<a, a> — ff (J E — K . H ) ds

S (1—10)

-0- -0+ -0+ -
~~~~

+ f (J B — K ~~ H )  dx. — O



in which double integration is over the surface of the cross section of the

guide and line integration is along ‘c,” the line of field discontinuity 
V

in the cross—section.

The integrand in the line integral of (1—b ) is not, however ,

well—defined , due to the fact that either or and also either
p m

or r can be used for and ir in the integrand . This is, however, clarified

by Ramsey [10], in the sense that either “m” or “p” values should be used for

both E and i~ and, in either case, the same result is obtained .

-0+ -0+ ‘+ -0+
Taking E — E and H — H and substituting currents as given in

(1—6), (1—7), (1—8) and (1—9) in (1—10) and effecting some rearrangements,

we end up with the variational expression (19).
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